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Abstract

Despite well documented anabolic effects of GH in mammals, a clear demonstration of such
responses in domestic poultry is lacking. Recently, comprehensive dose-response studies of GH
have been conducted in broilers during late post-hatch development (8 to 9 weeks of age). GH
reduced feed intake (FI) and body weight gain in a dose-dependent manner, whereas birds pair-fed
to the level of voluntary FI of GH-infused birds did not differ from controls. The reduction in
voluntary FI may involve centrally mediated mechanisms, as hypothalamic neuropeptide Y protein
and mRNA were reduced with GH, coincident with the maximal depression in FI. Growth of
breast muscle was also reduced in a dose-dependent manner. Circulating IGF-I was not enhanced
by GH, despite evidence that early events in the GH signaling pathway were intact. A GH
dose-dependent increase in circulating 3,39,5-triiodothyronine(T3) paralleled decreases in hepatic
5D-III monodeiodinase activity, whereas 59D-I activity was not altered. This confirms that a
marked hyperthyroid response to GH occurs in late posthatch chickens, resulting from a decrease
in the degradative pathway of T3 metabolism. This secondary hyperthyroidism would account for
the decreased skeletal muscle mass (52) and lack of enhanced IGF-I (53) in GH-treated birds.
Based upon these studies, it is now evident that GH does in fact have significant effects in poultry,
but metabolic responses may confound the anabolic potential of the hormone. © 1999 Elsevier
Science Inc. All rights reserved.
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1. Introduction

It is well documented that growth hormone (GH) administration to red meat animals, in
particular swine, consistently improves growth performance including average daily gain and
feed efficiency, with marked changes in the composition of gain characterized by enhanced
muscle growth and reduced adipose tissue deposition [1–6]. In fact, the mass of individual
muscles is reported to increase almost 50%, and carcass fat content to decrease by as much
as 75% with exogenous GH treatment to pigs [7]. The anabolic response to GH is associated
with increased rates of fractional protein synthesis in both liver and skeletal muscle [12,13],
consistent with increased RNA content of these tissues [14,5,13] and reflected in increased
rates of amino acid accretion into tissue protein [15]. In all cases, muscle fiber hypertrophy
occurs with no change in fiber number when GH is administered postnatally [8–11]. It
should be recognized that the muscle anabolic response to GH seems to be maximal at
relatively low dosages of the hormone in swine, whereas reductions in carcass fat and in vivo
increases in circulating insulin-like growth factor 1 (IGF-1) continue to increase in a
dose-responsive manner, even at the highest dosages of GH evaluated in the above and other
studies [3,8].

It is generally accepted that the anabolic responses to GH in mammals are mediated by
IGF-1, which stimulates myoblast and satellite cell proliferation and terminal myogenic
differentiation, the latter effect involving induction of myogenic genes (see [16 and 17] for
comprehensive reviews). Satellite cells are important for myofiber hypertrophy and for
regeneration of muscle tissue postnatally, and IGF-1 can enhance growth of avian myogenic
cells in vitro. Physiological concentrations of IGF-1 markedly stimulated thymidine incor-
poration into DNA in cultured chicken satellite cells [18,19], and in combination with
fibroblast growth factor (FGF), stimulated proliferation of turkey satellite cells [20]. Insulin-
like growth factor-1 also stimulated Brd-U-labeling of nuclei in satellite cells from sex-
linked dwarf (SLD) chickens, which express low circulating levels of IGF-1 due to a defect
in tissue GH receptors [21]. In addition, IGF-1 but not GH stimulated amino acid transport
and protein synthesis, and inhibited protein degradation in chicken skeletal muscle satellite
cells [22].

In vivo, exogenous IGF-1 has been reported to cause modest enhancement of overall
somatic [69] but no enhancement of skeletal muscle growth in either normal [23,24,69] or
SLD [24] chickens. However, free IGF-1 (i.e., not bound to IGF binding proteins) is rapidly
cleared from the circulation, and less likely to be available to peripheral tissues such as
skeletal muscle in comparison to more highly perfused visceral organs [25]. In fact, where
increased somatic growth has been reported for the chicken, gross changes in tissue depo-
sition were proportionately greatest in the gut [69]. In some cases, IGF-1 administered to
chickens was associated with reduced skeletal muscle mass [24,26], likely due to depressed
circulating concentrations of insulin (a potent inhibitor of proteolysis) [26].

Although most tissues synthesize IGF-1 locally, circulating IGF-1 is believed to be
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derived primarily from the liver in response to GH, and acts upon other tissues in an
endocrine manner. Circulating concentrations of IGF-1 are substantially reduced (but not
completely ablated) in hypophysectomized [27–29] and SLD chickens [30–32], and hepatic
IGF-1 mRNA is undetectable in the SLD [32], supporting the hepatic origin of most
circulating IGF-1, and the GH-dependence of IGF-1 synthesis by the liver in poultry.

Although overexpression of IGF-1 in striated muscle of transgenic mice was demonstrated
to produce marked hypertrophy of muscle fibers [34], the prevailing consensus concerning
IGF-1-mediated anabolic responses to exogenous GH in mammals is that these are a function
of circulating IGF-1 acting in an endocrine manner, rather than IGF-1 produced locally by
tissues such as skeletal muscle and acting in an autocrine/paracrine manner. In pigs admin-
istered exogenous GH, circulating IGF-1 concentrations are consistently increased and are
GH dose-responsive [3,4,13,33], whereas specific muscles such as the longissimus exhibit
myofiber hypertrophy with no increase in tissue IGF-1 mRNA expression [33], supporting an
endocrine route for IGF-1 action.

In general, exogenous GH administration using both recombinant and pituitary-derived
homologous preparations, have failed to improve somatic growth, and, in particular, skeletal
muscle deposition, in pituitary-intact domestic poultry [35–43]. In all the above studies, only
one or two dosages of GH were explored, and ranged from low physiological [35] to
pharmacological [43]. Also relevant to the lack of an anabolic response to GH in domestic
poultry is that little or no significant response to GH in terms of enhancement of circulating
IGF-1 concentrations have been obtained in immature, growing birds [39–42,44]. This is
particularly surprising in that hepatic GH receptor (GH-R) gene expression is detectable
beginning at early ages in the chicken [45,46], in vivo administration of GH increases hepatic
IGF-1 mRNA and protein content [44], and GH stimulates IGF-1 synthesis and its release
into the medium by chicken hepatocytes in culture [47]. These suggest all steps in the
pathway necessary for a circulating IGF-1 response to GH in vivo are functional in the
chicken (for review, see [55]).

Our laboratory recently completed an extensive GH dose-response study which has
enabled us to gain new insights into the mechanism and actions of GH in poultry (54,59,
Vasilatos-Younken et al., unpublished data). Briefly, recombinant chicken GH (cGH) (0, 10,
50, 100 or 200mg/kg BW/day; 0GH, 10GH, 50GH, 100GH, and 200GH) was administered
for 7 days (from 8 to 9 wk of age) to female broiler-strain chickens (n 5 10 per dosage)
during late posthatch development when endogenous GH secretion is relatively low. Each
daily dose was delivered by means of iv infusion in a physiologically appropriate pattern of
16 equal pulses (one every 90 min), to mimic the normal endogenous pulse pattern of GH
secretion in the growing chicken. The dosages administered resulted in circulating concen-
trations of GH over the full physiological range found in the broiler during posthatch
development (i.e., from,1.0 ng/mL to.100 ng/mL).

2. Results and discussion

In contrast to the positive effects of exogenous GH on BW gain in mammals, cGH
administered to late posthatch broiler-strain chickens reduced body weight gain in a dose-
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dependent manner, with a maximal depression (34%) at the highest dosage administered
(200 GH). Feed intake (FI) was also maximally depressed (19%) at this dosage; however,
depressed somatic growth was not secondary to the reduction in FI, as BW gains for birds
pair-fed to the level of voluntary FI of the GH-infused birds, but administered only vehicle,
did not differ from controls. Reductions in voluntary FI in response to GH may involve
centrally mediated mechanisms, as hypothalamic neuropeptide Y protein and gene expres-
sion (mRNA) were reduced approximately 34 and 50%, respectively, and hypothalamic
epinephrine was reduced 37% at the maximal depression in FI with 200GH, whereas pair-fed
birds did not differ from controls [54]. Neuropeptide Y is a potent stimulator of FI, and has
a robust stimulatory effect in the chicken when administered intracerebroventricularly [48].
Most of the effects of NPY seem to be mediated by neurons of the hypothalamus [49,50], and
the extensive coexistence of NPY and monoamines in the CNS suggests that these may
interact in the hypothalamus to regulate FI [51]. Given that most of the NPY-containing
neurons in the arcuate nucleus express GH-R mRNA [56], and GH can cross the blood-brain
barrier [57], it is possible that GH acts directly to alter hypothalamic NPY and, hence, FI.
These data provide new evidence of a role for GH in altering voluntary FI via centrally
mediated mechanisms, independent of its effects as a repartitioning agent.

Although the complete signal transduction pathway for GH has not been fully delineated,
several signaling events are known to occur after binding of GH to target tissue receptors and
formation of a GH-GH-R dimer (see [58] for review of molecular mechanisms of GH action).
These include recruitment of a member of the Janus-activated kinase family, JAK2 tyrosine
kinase. JAK2 binds to the GH-R, is autophosphorylated, and results in tyrosine phosphor-
ylation of the GH-R and a variety of cytosolic substrates including several members of the
STAT family of transcriptional regulators. The latter subsequently translocate to the nucleus,
bind to DNA, and activate transcription of specific genes (Figure 1). Hepatic JAK2 protein

Fig. 1. Model of the presumed growth hormone (GH) signaling pathway related to transcriptional regulation of
GH-responsive genes. Signaling is initiated by binding of GH to adjacent receptors (GHR) to form a functional
GHR-GH-GHR dimer, and bringing about a conformational change in the GHR. This results in association of a
member of the Janus family of tyrosine kinases (JAK2) with the GHR, and tyrosine phosphorylation of the GHR
and autophosphorylation of JAK2, which further recruits members of the STAT family of transcriptional
regulators. STAT proteins (including STATs 1, 3, and 5) are activated in response to phosphorylation by JAK2,
and translocated to the nucleus where they regulate transcription of GH-responsive genes.
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and tyrosine phosphorylation were increased in a curvilinear, dose-dependent manner with
cGH administration, with a maximal response at 100 GH for both [59]. Hepatic IGF-1
protein concentration was also increased from virtually undetectable levels to over 60- to
70-fold with cGH [59]. However, despite evidence that early events in the GH signaling
pathway were intact, and hepatic IGF-1 synthesis was stimulated by cGH, circulating IGF-1
concentrations were not altered by cGH at any dosage. Although failure of exogenous GH
to enhance circulating IGF-1 levels would predictably limit an anabolic response to the
hormone, actual decreased BW gain suggests other mechanisms are at play. In fact, skeletal
(breast) muscle deposition was also reduced by cGH in a dose-dependent, curvilinear
manner, with a maximal reduction (13%) in mass at 100 GH. Assessment of skeletal muscle
free 3-methylhistidine content indicated no differences from control values with GH treat-
ment, suggesting that proteolysis was not increased and the observed decrease in breast
muscle mass was a function of a reduced rate of synthesis, also contrary to the known effects
of exogenous GH as mediated by IGF-1 in mammals.

To begin to understand how administration of exogenous cGH to late posthatch chickens
not only failed to enhance growth, but resulted in apparent catabolic tissue and conflicting
endocrine responses, it must be realized that GH also has profound metabolic effects which,
in avian species, are intimately tied to the thyrotropic axis (for review, see [60]). In birds, as
in most species, 3,39,5-triiodo-L-thyronine (T3) is the metabolically active form of thyroid
hormone, and is derived primarily from peripheral (largely hepatic) monodeiodination of
thyroxine (T4) by 59D-I monodeiodinase, whereas degradation of both T3 (to the inactive
form, T2) and T4 (to rT3) are effected by 5D-III deiodinase (Figure 2A). Growth hormone is

Fig. 2. (a) Normal pathway of thyroid hormone metabolism. The metabolically active form of thyroid hormone,
3,39,5-triiodo-1-thyronine (T3), is derived primarily via peripheral (hepatic) deiodination of thyroxine (T4) by
59D-I monodeiodinase (59D-I). Degradation of both T4 (to rT3) and T3 (to T2) are effected by 5D-III deiodinase
(5D-III). Thyroxine production by the thyroid gland is directly regulated by pituitary thyroid-stimulating hormone
(TSH), which is responsive to feedback regulation from circulating T3. (b) Effect of growth hormone (GH) on
thyroid hormone metabolism. Growth hormone decreases the activity of hepatic 5D-III deiodinase, resulting in
reduced degradation of both T3 and T4, and increasing circulating T3 concentrations. Increased circulating T3 is
presumed to feedback to reduce pituitary TSH secretion and, consequently, production of T4 by the thyroid gland,
with a net effect of reduced circulating T4.
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reported to decrease hepatic 5D-III activity in the chicken, thereby decreasing T3-degrading
activity in the periphery and resulting in elevated circulating T3 concentrations [61,62]
(Figure 2B). This effect is developmentally regulated, as a hyperthyroid response to exog-
enous GH occurs in late embryonic development and in the newly hatched chick, but
disappears during the early posthatch period, likely due to masking by high endogenous GH
(and, T3) status, and is reported to occur again in the adult bird [61,62,66].

Consistent with reported effects of acute GH administration on circulating thyroid hor-
mones, GH increased plasma T3 concentrations in a dose-dependent, curvilinear manner
(P , 0.001), with a maximal (twofold) increase at 100 GH, but with no effect on 59D-I. This
T3 response inversely paralleled dose-dependent decreases in hepatic 5D-III deiodinase
activity (p , 0.01) and muscle mass, suggesting direct relationships among all three. These
findings verify the expression of a marked hyperthyroid effect of GH in late posthatch
chickens resulting from decreased peripheral degradation of circulating T3, and strongly
suggest that the apparent decreased body weight gain and, specifically, muscle mass in
GH-treated birds is secondary to a GH-induced hyperthyroid state, and not a primary
GH-lesion. Net skeletal muscle catabolism due to decreased muscle protein synthesis occurs
with untreated thyrotoxicosis [52], and supplemental T3 has been reported to reduce body
weight gain in chickens [63–65].

Although factors regulating hepatic IGF-1 synthesis and release (beyond GH) are not well
delineated, there is evidence that thyroid hormones may be critical regulators of IGF-1.
Triiodothyronine alters IGF-1 production by neuronal cells in culture [67]; thyroid status
profoundly influences circulating IGF-1 bioactivity and local IGF-1 production in a tissue-
specific manner in the rat [68]; and circulating IGF-1 concentrations were reported to
decrease in chickens administered supplemental T3 [53,63]. Thus, the combined suppression
of a GH-induced increase in circulating IGF-1 concentrations, together with the catabolic
effects of GH-induced hyperthyroidism, preclude any potential for the anabolic effects of GH
to be realized under conventional treatment regimes.

In summary, it is clear that GH does in fact have significant, dose-dependent effects in

Fig. 2b.
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avian species, but profound metabolic responses to the hormone, particularly with respect to
the thyrotropic axis, may confound the realization of any IGF-1-mediated anabolic potential
of GH in the growing bird. Further studies to delineate the regulation of hepatic IGF-1 release
will help to verify if suppression of this event by exposure to relatively high levels of T3

occurs, and potentially clarify the mechanism(s) of this action.
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